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Abstract

Staggered grids have been widely used with finite difference approaches for incompressible flow simulation. They

retain conservation properties that stabilize the flow field, and avoid odd–even decoupling in the pressure field. On a

non-uniform mesh, however, the accuracy of finite difference schemes is degraded to the order of the mesh stretch, if all

the conservation properties are to be upheld. This study shows how a non-uniform numerical mesh creates short

wavelength errors in convective terms, especially when the grid spacing varies in the streamwise direction. The con-

servation properties of convective schemes on a non-uniform mesh can conflict with aspects of numerical accuracy. It is

crucial to employ an area-weighted average for the convection velocity in order to impose mass conservation in the

presence of mesh stretching. Truncation error analysis indicates that energy conserving schemes produce anti-diffusion

error if the mesh is stretched, or positive diffusion if it is narrowed. An alternative convection scheme that minimizes the

mesh-stretch error is proposed and evaluated through numerical simulations. The nature of mesh stretch error is

illustrated by a direct numerical simulation of turbulent channel flow.

� 2004 Elsevier Inc. All rights reserved.

1. Introduction

As high-performance computer systems have become available, direct numerical simulation (DNS) of

turbulent flow has been applied to increasingly complicated flow geometries. In many studies, the finite

difference approach with a staggered grid system has been employed, with non-uniform mesh spacing near

non-slip boundaries. With increasing geometrical complexity, stretching in the flow direction is sometimes

unavoidable. This gives rise to some issues of numerical accuracy discussed herein.

In finite difference approximations, a numerical method that conserves mass, momentum, and kinetic
energy has been preferred to obtain a numerically stable solution [1,4,5,7]. As physically unstable, complex

fluid motions develop, the globally conserved quantities can stabilize numerics over the entire field, and

ensure converged solutions. Morinishi et al. [6] showed that finite difference schemes (FDS) that conserve
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mass momentum and energy can be constructed using centered differences, to arbitrary order of accuracy,

on a uniform, staggered grid system. Those schemes are referred to as fully conservative. The form of the

convective terms may be divergence, advective, or skew-symmetric; they are all mathematically equivalent if
the divergence-free condition is satisfied at the given order of accuracy.

However, Morinishi et al. [6] also show that, with non-uniform mesh spacing, the fully conservative form

does not retain the accuracy that is achieved on a uniform mesh. If accuracy is enforced using geometric

interpolation, conservation must be sacrificed by discarding symmetric, centered difference forms, and

adding interpolation weights. Even if the lowest-order truncation errors are eliminated, diffusion effects

arise in higher-order truncation terms, which destroys exact energy conservation. Since this additional error

is multiplied by the convective velocity, mesh stretch in the streamwise direction must be minimized to

suppress adverse effects. In steady state problems, an intensive mesh stretch is often applied only in the
direction perpendicular to the flow. However, in unsteady simulations of turbulent flow, it is no longer

possible to fix the mesh to the flow direction throughout the simulations, especially in relatively complicated

geometries. Vortices that cross the stretched mesh region can be affected by the added diffusion. This leads

to numerical errors that persist in statistical samples.

In this study, mesh stretch effects relevant to direct simulation of turbulent flow are investigated, from

the viewpoints of effective accuracy and conservation properties of numerical schemes. We consider the

incompressible turbulent flow governed by the Navier–Stokes equations,

oUj

ot
þ oðUjUkÞ

oxk
¼ � oP

oxj
þ m

o2Uj

oxk oxk
; ð1Þ
oUk

oxk
¼ 0; ð2Þ

where U1, U2, and U3 (or U , V , and W ) are velocities in the x1 (streamwise), x2 (normal), and x3 (spanwise)
directions (or x, y, and z), respectively, P is pressure, and m is molecular viscosity. We focus only on second-

order centered difference schemes in a rectangular, non-uniform, staggered grid system, with three-point

stencils applied in each spatial direction. Although the convection term of Eq. (1) is written in its divergence

form, FDS are formulated in either divergence or advective form. In fact, the higher-order schemes are

more easily modified in their advective forms on a non-uniform mesh, if their original accuracy is to be

retained [6].

In the numerical tests of the present study, a fractional step method [2] is employed to advance the

numerical solution in time. Static, not adaptive, meshes, of the type used in turbulence simulation, are at
issue. The spatial derivatives in the directions with mesh stretch are implicitly solved by a second-order

Crank–Nicolson scheme to avoid a CFL restriction. When three-dimensional examples are considered as

numerical experiments, an equally spaced grid is used in the spanwise direction; then, the derivatives in that

homogeneous direction are solved by an explicit third-order Runge–Kutta scheme, combined with the

implicit Crank–Nicolson scheme [8]. At each substep of the semi-implicit scheme, the momentum equations

are advanced with pressure terms left unchanged, then projected onto a divergence-free field to satisfy the

continuity of Eq. (2) through the pressure correction function that obeys a Poisson equation.
2. Linear analysis

First we conduct a linear analysis to identify mesh stretch effects on a convection problem. On a uniform

mesh, centered difference schemes only possess dispersive errors. However, diffusion effects arise with mesh

stretching. Non-uniform mesh spacing can produce positive or negative diffusion. The wavelength de-

pendence of diffusion errors will be investigated using Fourier series analysis. Fourier error analysis is
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alternative to Taylor series analysis. The latter corresponds to the long wave limit. In turbulence simula-

tion, errors at shorter wavelength inevitably are important.

2.1. Finite difference operators for linear problems

A simple analysis illustrates the effect of mesh stretch. We consider a linear wave equation with a

constant convection velocity:

ouðx; tÞ
ot

þ c
ouðx; tÞ

ox
¼ 0: ð3Þ

With a three-point stencil at j� 1, j, and jþ 1, the spatial derivative at xj can be approximated as

ou
ox

����
j

� Cþ
j

du
dx

����
jþ1

2

þ C�
j

du
dx

����
j�1

2

; ð4Þ

where Cþ
j and C�

j are constants to be provided. Note that Eq. (4) reads as an interpolation to xj using the
values at xjþ1

2
and xj�1

2
with the weights Cþ

j and C�
j .

In analogy to the convective schemes that will be introduced in Section 3.3, we examine the following

three finite difference forms, denoted FD-1, FD-2, and FD-3, respectively:

• FD-1 volume weighted average

dFD-1
x u ¼ du

dx

V;x

; ð5Þ

• FD-2 arithmetic mean

dFD-2
x u ¼ du

dx

A;x

; ð6Þ

• FD-3 linear interpolation

dFD-3
x u ¼ du

dx

L;x

; ð7Þ

where the interpolates of a quantity / are defined as

/
V;x
���
j
�

Dxjþ1
2
/ðxjþ1

2
Þ þ Dxj�1

2
/ðxj�1

2
Þ

Dxjþ1
2
þ Dxj�1

2

; ð8Þ
/
A;x

���
j
�

/ðxjþ1
2
Þ þ /ðxj�1

2
Þ

2
; ð9Þ
/
L;x
���
j
�

Dxj�1
2
/ðxjþ1

2
Þ þ Dxjþ1

2
/ðxj�1

2
Þ

Dxjþ1
2
þ Dxj�1

2

: ð10Þ

The mesh spacing at jþ 1
2
is defined as Dxjþ1

2
� xjþ1 � xj, and the superscripts V , A, and L indicate volume-

weighted average, arithmetic mean, and linear interpolation, respectively.

The weights, Cþ
j and C�

j , for each form are given by the coefficients of / in (8)–(10). With a volume-

weighted average, the spatial difference (4) of the three-point stencil at xj simply becomes the difference
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between xiþ1 and xi�1 as in the uniform mesh case. For data stored at the grid vertices, it can be written

as

dFD-1
x ujj ¼

uðxjþ1Þ � uðxj�1Þ
Dxj�1

2
þ Dxjþ1

2

: ð11Þ

This FD-1 conserves the quadratic quantity, u2, or kinetic energy. The other two forms, FD-2 and FD-3,

can be connected with the volume-weighted average by adding a diffusion term that is multiplied by mesh

stretch:

dFD-2
x u ¼ dFD-1

x u� dðDxÞ
4

� d
dx

du
dx

� �
; ð12Þ
dFD-3
x u ¼ dFD-1

x u� dðDxÞ
2

� d
dx

du
dx

� �
; ð13Þ

where dðDxÞjj ¼ Dxjþ1
2
� Dxj�1

2
.

The second-order diffusion error produced by FD-2 and FD-3, with c > 0, serves as extra diffusion if the

mesh is narrowed in the convective direction, or as anti-diffusion if it is stretched. Since this error term is

magnified by c, generally we should avoid extensive mesh stretch in the streamwise direction. The numerical

error generated by the non-uniform mesh will be amplified and transferred downstream by the convective

velocity.

2.2. The modified wavenumber for non-uniform grid spacing

Fourier error analysis identifies diffusive and dispersive errors on a uniform mesh. It characterizes the

dependence of FDS on the wavenumber. However, even with non-uniform mesh spacing, Fourier analysis

still provides useful information on mode dependence of the mesh stretch error; especially the high-

frequency error, which is difficult to clarify solely by Taylor series analysis [3]. In a turbulent flow simu-

lation, eddies at Kolmogoroff length scales have the highest frequency, and mesh stretch can cause unex-
pected effects on statistical samples. We extend Fourier error analysis to a non-uniform grid system, and

evaluate the diffusive errors in terms of the modified wave number.

A function with a period L can be expanded in a Fourier series, and evaluated at discrete locations:

uðxj; tÞ ¼
X1
n¼�1

�unðtÞei
2pn
L xj ; ð14Þ

where �un is a Fourier coefficient in x-space, and 2pn=L is defined as the wave number, kn, hereafter. The
infinite Fourier expansion of a continuous function converges uniformly over the period L. When the

derivative of uðxÞ is computed, we can apply the spatial derivative to each element of the Fourier series:

ou
ox

����
j

¼
X1
n¼�1

�unikn eiknxj : ð15Þ

The extension of the concept of a �modified wavenumber� to a non-uniform mesh can be accomplished

using this general Fourier expansion. When discrete functions are combined to represent a finite difference,

it can be decomposed into the same linear sum of Fourier modes, if the functions are smoothly and

continuously interpolated – which assures the uniform convergence of the linear combination. Then, a finite

difference form of a first-order spatial derivative can be written as
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ou
ox

����
j

�
X
m

aðjÞm ujþm ¼
X1
n¼�1

X
m

aðjÞm eiknxjþm

" #
�un; ð16Þ

where aðjÞm is a coefficient of the FDS at the jth grid point. Comparing the Fourier expansions of the exact

spatial derivative to its finite difference approximation, Eqs. (15) and (16), respectively, the modified

wavenumber k�n on a non-uniform mesh can be defined as follows:X
m

aðjÞm eiknðxjþm�xjÞ � ik�nj: ð17Þ

Note that Eq. (17) is defined locally at the jth point, since the modified wavenumber has dependence on j.
For centered difference schemes using a three-point stencil of Eq. (4), a modified wavenumber is given as

k�nj ¼ �i Cþ
j

eih
þ
nj � 1

Dxjþ1
2

"
� C�

j

e�ih�nj � 1

Dxj�1
2

#
; ð18Þ

where hþnj � knDxjþ1
2
, h�nj � knDxj�1

2
. The real and imaginary parts of the modified wavenumber can be written

as follows:

k�njReal
¼ Cþ

j

sin hþnj
Dxjþ1

2

þ C�
j

sin h�nj
Dxj�1

2

; ð19Þ
k�njImag
¼ �Cþ

j

cos hþnj � 1

Dxjþ1
2

þ C�
j

cos h�nj � 1

Dxj�1
2

: ð20Þ

Eq. (19) can be considered to be a linear average of sinðkDxÞ=Dx at jþ 1
2
and j� 1

2
. Note that sinðkDxÞ=Dx is

the modified wavenumber of a three-point centered difference scheme on a uniform grid.

In the convection problem of Eq. (3), k�njReal
represents the oscillation of a mode. Then k�njImag

either

amplifies (if ck�njImag
> 0) or damps (if ck�njImag

< 0) its magnitude. In the case of a uniform grid with an

anti-symmetric centered difference, k�njImag
vanishes; only a dispersive error remains in the sense that

k�n 6¼ kn.
We are primarily interested in the imaginary part of the modified wavenumber, Eq. (20). For conve-

nience, we define some geometric parameters,

DxMj � ðDxjþ1
2
þ Dxj�1

2
Þ=2

and

�j � ðDxjþ1
2
� DxMj Þ=DxMj ¼ ðDxMj � Dxj�1

2
Þ=DxMj :

� is defined as the mesh stretch normalized by local mesh spacing. Note Dxjþ1
2
¼ ð1þ �jÞDxMj and

Dxj�1
2
¼ ð1� �jÞDxMj .

Then, for the interpolations shown in Eqs. (5)–(7), the diffusive part of the wavenumbers are

k�FD-1
j Imag ¼ � 1

2DxMj
cos hþj

n
� cos h�j

o
; ð21Þ
k�FD-2
j Imag ¼ � 1

2DxMj

1

1þ �j
cos hþj

��
� 1

�
� 1

1� �j
cos h�j

�
� 1

��
; ð22Þ
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k�FD-3
j Imag ¼ � 1

2DxMj

1� �j
1þ �j

cos hþj

��
� 1

�
� 1þ �j
1� �j

cos h�j

�
� 1

��
; ð23Þ

where the index n was dropped. Assuming that c is positive, Eq. (17) is consistent with positive-diffusion if

k�j Imag < 0, or anti-diffusion if k�j Imag > 0.

Fig. 1 shows the diffusive part of the modified wavenumbers versus kDxM at several values of �, for the
three forms of Eqs. (21)–(23). The modified wavenumber is multiplied by local mesh spacing DxM, and also

divided by � in the diagram.

A few comments: First, the diffusivity depends locally on kDxM, rather than on a global Fourier

wavenumber, k. Thus, one Fourier mode provides a variable diffusion error at different points of the mesh.

Second, the sign of the mesh stretch ratio � determines whether it shows positive- or negative-diffusion.

Third, for the smaller values of �, 0.2 and 0.01 in the diagram, the dependence on � is insignificant in the

normalized form k�ImagDx
M=2� that is plotted.

In the DNS cases of Section 4, � is less than 0.1. Therefore, k�Imag depends approximately linearly on the
non-dimensionalized mesh-stretch ratio,

2�j ¼ ðDxjþ1
2
� Dxj�1

2
Þ=DxMj :

This Fourier analysis of error might be justified by the following considerations. In a general Fourier

expansion, all Fourier modes with kn ! 1must be included, whereas simulation on a uniform grid requires

only discrete wavenumbers up to �p=Dx. However, if a discrete function is replaced by a continuous,

sufficiently smooth function, and if the lower-frequencies are dominant, a finite Fourier series up to the

order knDx ¼ p will be a good approximation of the exact function. Considering that the diffusive error
shown in Eq. (20) depends on a local Fourier mode, sufficient smoothness can be assumed. Locally, the

shortest wavelength is on the order of the mesh spacing; Fourier modes higher than this are insignificant if

the grid resolution is not extremely coarse.

Among the three schemes examined here, FD-1 (Eq. (5)) exhibits an anti-diffusion error throughout

06 kDxM 6 p for positive �, i.e., in a mesh-expanding region. For � < 0, it shows purely diffusive error

within 06 kDxM 6p. This behavior corresponds to the usual second-order diffusion, which is the lowest-

truncation error. At low wavenumbers, approximately up to kDxM ’ 0:7p, the magnitude of the modified

wavenumbers is larger than those of the other two schemes. Beyond that, however, jk�Imagj decreases and
reaches zero at kDxM ¼ p, due to higher-order errors, also caused by mesh stretching.
Fig. 1. Imaginary (diffusive) part of modified wavenumber diagrams of FDS for � ¼ �0:01; 0:2; 0:5.
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Since FD-3 (Eq. (7)) eliminates the lowest-order mesh stretch error, the long wavelength diffusion that is

observed in the other two schemes is removed, as shown in Fig. 1. However, the diffusive error of FD-3

increases at higher wavenumbers. As the wavenumber goes up to p=DxM, it produces the largest diffusive
error among these three forms. For negative �, or in a mesh-narrowing region, it leads to an unstable mode.

Hence, this scheme may affect the eddies of the smallest size, such as the Kolmogoroff length scale. Evidence

of this adverse effect will be presented in Section 2.3.

As FD-2 (Eq. (6)) retains second-order diffusion with a reduced coefficient, positive- and anti-diffusions

are mixed in higher- and lower-frequency regions. The FD-2 curve lies in the middle of FD-1 and FD-3

over a conventional range of Fourier modes.

2.3. Linear convection tests

The observations on the Fourier mode dependence can be verified in a numerical test. The linear con-

vection problem represented by Eq. (3) was solved using the three forms of interest on a cell-centered

stretched mesh, with inter-cell faces xjþ1
2
¼ nj þ 1

4p sinð2pnjÞ for 06 n6 1, nj ¼ j=N ðj ¼ 0; 1; . . . ;NÞ, with
N ¼ 32. The mesh is narrowed in 0 < x < 0:5, and expanded in 0:5 < x < 1. As initial conditions, low- and

high-frequency modes in computational space, ujt¼0 ¼ cosð2pnnnjÞ with nn ¼ 2 and N=2, were prescribed.

Here nn signifies a Fourier mode in computational space. The finite-difference equation was advanced using

the Crank–Nicholson scheme with a periodic boundary condition at the ends, x ¼ 0 and 1. Crank–Nich-
olson was chosen because it is common in turbulence simulation. The linear tests were run for one period of

time, so that the analytical solution coincides with the initial state.

Fig. 2 shows the case of a low-wavenumber mode. The solutions at the final state and its Fourier

spectrum in computational space are presented. Because of low grid resolution, the solutions show con-

siderable distortion from the initial profile for all the schemes. However, the higher-frequency error that

appears in the mesh-stretching region, x > 0:5, shows the characteristic of each scheme. The volume-

weighted average form produces the largest oscillations in the solution. Non-uniform grid spacing induces

higher-frequency modes – which is illustrated in the Fourier mode diagram. The linear interpolation form
shows the least amount of higher-frequency error. The arithmetic mean form produces slightly larger errors

than the linear interpolation form in the high wavenumber region.
Fig. 2. Comparison between the three forms in a linear convection problem using a low-frequency wave (nn ¼ 2) as an initial state.

Solutions after one period of time (left) and their Fourier modes in the computational n-space (right). Dotted line denotes the initial

state, or analytical solution.



Fig. 3. Comparison between the three forms in a linear convection problem with a high-frequency wave (nn ¼ N=2) as an initial state.

See the caption of Fig. 2.
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The same tendency was observed not only in this linear convection problem, but also in a non-linear

vortex convection test [3]. An adequately resolved vortex can be considered to be composed of relatively

low-wavenumber modes. In this experiment, although not shown in the present paper, a two-dimensional

Taylor vortex was convected by a uniform flow on a non-uniform mesh, which first narrowed then stret-
ched in the streamwise direction. Scheme I of Section 3 showed the largest oscillation in the mesh stretching

region, where the convective scheme produces anti-diffusion. This oscillatory behavior was minimized by

Scheme III of Section 3 by removing the lowest-order truncation error.

Fig. 3 shows the case of a high-frequency initial condition. Since the highest-frequency mode is a sta-

tionary solution for the volume-weighted average form, no time advance occurs in the solution. As has been

expected from Fig. 1, the linear interpolation form shows the largest deviation from the initial state. In its

Fourier mode diagram, lower modes are excited over a wide range of wavenumbers, although the resulting

highest-frequency mode does not change significantly from the initial state. These lower-frequency errors
are significantly reduced in the arithmetic mean form, which is confirmed by both the physical and Fourier

spaces in Fig. 3.

To summarize the above results, the volume-weighted average form adversely affects the lower-frequency

waves, while the linear interpolation form, which shows the best performance in a low-frequency simula-

tion, spoils a high-frequency wave to an excessive degree. The arithmetic mean form does not show the best

result in either test; however, its mixed effects of positive and negative diffusions for lower and higher

wavenumbers lead to acceptable performance for both the cases. The effects of these errors produced in

lower- and high-frequency modes will be evaluated in a full Navier–Stokes simulation in Section 4.
3. The formulation of convective schemes

3.1. Conservation properties of FDS

We are concerned with the effects of mesh on computations of incompressible fluid flow, especially as

relates to turbulence simulation. The development here is necessarily brief; see Ikeda and Durbin [3] for
more details. As a preliminary, the conservative form of a FDS is reviewed.

In a time evolving process represented by the following partial differential equation
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o/
ot

þ Qð/Þ ¼ 0; ð24Þ

the term Qð/Þ is conservative if it can be written in divergence form,

Qð/Þ ¼ r �~F ð/Þ ¼ oFxð/Þ
ox

þ oFyð/Þ
oy

þ oFzð/Þ
oz

: ð25Þ

It is common practice to derive an integral form of conservation equation by integrating Eq. (24) over an

arbitrary, time-independent, closed domain X and applying Gauss� theorem:

d

dt

Z
X
/dV þ

Z
oX

~F ð/Þ � d~S ¼ 0: ð26Þ

Eq. (26) shows that the net flux ~F , crossing the surface oX, causes the rate of change with time of the volume

integral of / over the domain X.
Eq. (26) is the basis for finite volume formulations. A numerical cell is regarded as the control volume X,

and the net flux into the cell is balanced by the time difference of the function /, which is defined as the

average over the cell. Moreover, a finite difference formulation corresponding to Eq. (26) on a micro-scale is

introduced by setting up a control volume for each node point in a vertex grid system. Conservation on a
global-scale is shown by summing the function / times volume weights over the entire region [2]. These

ideas lead to a discretized conservation form, from a finite difference viewpoint.

We consider a structured, non-uniform Cartesian grid. Locations xj and xjþ1
2
will be needed. The jth

index is defined as a node point, and jþ 1
2
comes in the middle of two points, j and jþ 1. In a vertex grid

system, variables are available at j; in a cell-centered grid system, they are at jþ 1
2
[2, chapter 4].

To see the conservation properties in a finite difference form, we define the discrete derivative operator

for a non-uniform, rectangular mesh at the jth point in the x-direction as

df
dx

����
j

�
f ðxjþ1

2
Þ � f ðxj�1

2
Þ

xjþ1
2
� xj�1

2

: ð27Þ

Instead of Eq. (27), we may also have to define the finite difference operator at jþ 1
2
, not at j as shown. In

this case, we only need to shift the indices by 1
2
. Using this operator, the term Qð/Þ in Eq. (24) is conservative

for the quantity / when discretized with the second-order centered difference, if Qð/Þ can be written as

Qð/Þ ¼ dFxð/Þ
dx

þ dFyð/Þ
dy

þ dFzð/Þ
dz

: ð28Þ

This definition corresponds to Eq. (25), but in a discrete form, and is conservative if the numerical volume

integration obeys a discrete Gauss theorem equivalent.

3.2. The numerical flux and interpolation operators

The formulation of numerical fluxes on a stretched mesh is considered here. Although only the two-

dimensional formulation is presented for simplicity, the following argument can be applied to the three-

dimensional case with no difficulty.

With the finite difference operator, the discrete continuity on a two-dimensional staggered grid is written

as

oU
ox

þ oV
oy

� ðCont:Þ � dU
dx

þ dV
dy

: ð29Þ
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In a staggered grid system, continuity is evaluated at each cell center, and the numerical flux of mass is

provided at each cell face. Therefore, second-order accuracy is retained for mass conservation, even with

mesh stretching.
In momentum equations, an equivalence between divergence and advective forms is analytically

achieved if continuity is enforced. For example, the advective form for U -velocity can be connected with the

divergence form as

U
oU
ox

þ V
oU
oy

¼ oUU
ox

þ oUV
oy

� U � oU
ox

�
þ oV

oy

�
: ð30Þ

When a momentum equation is solved by a finite volume approach, fictitious cell-faces are set up for each

velocity component [2, p. 73]. A resulting control volume is composed of two adjoining half cells, as shown

in Fig. 4. Therefore, the mass conservation in the control volume must be evaluated as an average of the

two cells.

To correctly represent the mass flux crossing the cell faces, we define the area-weighted average operator

applied to a convective velocity component / in the x-direction at an inter-cell location as (see Fig. 4)

b/x
���
jþ1

2

�
S/
jþ1/ðxjþ1Þ þ S/

j /ðxjÞ
S/
jþ1 þ S/

j

; ð31Þ

where S/ is the area of a cell face on which / is defined in a staggered grid, e.g., SU ¼ DyDz, SV ¼ DxDz, and
SW ¼ DxDy in the three-dimensional case. With definition (31) mass flux is conserved by the continuity

equation. Note that on a rectangular grid, bU x ¼ U
A;x

, bV x ¼ V
V;x
.

Interpolation operators are defined in Eqs. (8)–(10). We replace the first by

/
V;x
���
j
�

Dxjþ1
2
/ðxjþ1

2
Þ þ Dxj�1

2
/ðxj�1

2
Þ

2ðxjþ1
2
� xj�1

2
Þ ; ð32Þ
xj+1/2

xj+1

(j− 1, k+1/2)

(j− 1, k− 1/2)

(j− 1/2, k)

U x^

V x^ :  U
:  V

Fig. 4. A control volume for a U -velocity location and inward/outward fluxes using the area-weighted convective velocity, on a two-

dimensional staggered grid.
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Reference to Fig. 4 shows that in the x-direction, the V -velocity is stored at xjþ1
2
. At xj it must be found via

interpolation – either volume averaging, arithmetic mean, or linear interpolation, denoted by superscript V,

A or L. When the U -velocity is needed at xjþ1
2
it must be interpolated between values at j and jþ 1. We refer

to the V as being cell-centered on the x-grid, because it is stored at the jþ 1
2
points, and to U as being vertex

centered.

The expressions of the denominator in Eqs. (32) and (10) are different in general, although they are

equivalent in a vertex-based grid system. Part of the difficulty in discussing mesh stretch effects is that a

staggered grid is rather a mixture of both vertex and cell-centered systems. Hence, in the x-direction, the
staggered grid provides a vertex-based formulation for the U equation, but a cell-centered formulation for

the V and W equations.

On a vertex-based mesh, the distance between two neighboring nodes xjþ1 � xj ¼ Dxjþ1
2
is given by the

mesh spacing directly. On a cell-centered mesh, however, the distance between nodes is

xjþ1
2
� xj�1

2
¼ ðxjþ1 � xj�1Þ=2 � Dxj. The volume-weighted average (32) should adopt the sum of interpola-

tion weights, Dxjþ1
2
þ Dxj�1

2
, as its denominator. Instead, we employ 2ðxjþ1

2
� xj�1

2
Þ, so that this average is

consistent with global conservation. When applied to interpolate a value at jþ 1
2
the denominator becomes

2ðxjþ1 � xjÞ 6¼ Dxjþ1 þ Dxj:

Hence, Eq. (32) can be considered to be a modified volume-weighted average. If Eq. (32) is used on a cell-

centered mesh, the discrepancy causes an additional error term in a first-order derivative that is

Oðh � d2h=dx2Þ, where h denotes mesh width. However, our numerical experiments have confirmed that this

error does not significantly affect the solution compared to the mesh stretch error that is of the order of
h � dh=dx.

Using the area-weighted average defined in Eq. (31), mass conservation in the control volume for the U -

velocity can be expressed as the volume-weighted average of the two adjoining cells as follows:

ðCont:ÞV;x ¼ d bU x

dx
þ dbV x

dy
:

Note that the volume average is applied to the discrete derivatives, not to the variables, U and V them-

selves. The right side follows because of Eq. (32).

As will be shown later, the definition (31) must be adopted for convective velocity, or flux velocity, in

order to retain the mathematical equivalence between the divergence form and the advective form. A

schematic view of a finite volume formulation on a non-uniform mesh, using an area-weighted convective

velocity (V̂ ) is shown in Fig. 4.
3.3. The proposed schemes on non-uniform mesh

Using the interpolation operators of Eq. (32) and Eqs. (9) and (10), we formulate the following three
convective schemes on non-uniform mesh which are analogous to FD-1–3 (see [3] for further details).

3.3.1. Scheme I

The application of area-weighted average to flux velocity and arithmetic mean to momentum velocity

leads to kinetic energy conservation; an equivalent advective form can be formulated by employing volume-

weighted averages. The resulting convective scheme, denoted Scheme I, can be written in divergence and

advective forms for the U -velocity as follows:

oUU
ox

þ oVU
oy

� ðDiv:-IÞx �
dð bU xU

A;xÞ
dx

þ dðbV xU
A;yÞ

dy
; ð33Þ
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U
oU
ox

þ V
oU
oy

� ðAdv:-IÞx � bU x dU
dx

V;x

þ bV x dU
dy

V;y

: ð34Þ

ðAdv:-IÞx is connected with ðDiv:-IÞx via

ðAdv:-IÞx ¼ ðDiv:-IÞx � U � ðCont:ÞV;x: ð35Þ

These formulas are similar to thoseofMorinishi et al. [6], but havebeen extended toanon-uniformgrid system.

The conservation of kinetic energy is derived as

U � ðDiv:-IÞx �
U 2

2
� ðCont:ÞV;x ¼ 1

2

dð bU xgUU xÞ
dx

"
þ dðbV xgUU yÞ

dy

#
; ð36Þ

where the operator ~x interpolates a product in the x-direction [6]

f/wx
���
jþ1

2

¼ 1

2
/ðxjþ1ÞwðxjÞ þ

1

2
/ðxjÞwðxjþ1Þ: ð37Þ

Since ðDiv:-IÞ is conservative for momentum by its definition, these schemes locally conserve both mo-

mentum and kinetic energy if the continuity equation is satisfied. This form often is preferred, as the

globally conserved properties, especially energy, may stabilize the entire field.

However, often accuracy is of more concern than conservation. Thus, alternative forms warrant con-

sideration. The interpolations used in Eqs. (33) and (34) increase the lowest-order truncation errors, thereby

degrading accuracy.

3.3.2. Scheme II

By applying linear interpolation to evaluate the inter-cell flux, we obtain the following divergence form:

ðDiv:-IIÞx �
dð bU xU

L;xÞ
dx

þ dðbV xU
L;yÞ

dy
: ð38Þ

This is denoted Scheme II. This inter-cell flux form is conservative for momentum, but not for kinetic

energy in the presence of non-uniform mesh spacing.

The natural linear interpolation is equivalent to arithmetic mean in the vertex grid direction. Thus

U
L;xðjþ 1=2Þ ¼ 1

2
ðUjþ1 þ UjÞ ¼ U

A;x
;

similarly V
L;y ¼ V

A;y
.

The corresponding advective form is

ðAdv:-IIÞx � bU x dU
dx

V;x

þ bV x dU
dy

A;y

¼ ðDiv:-IIÞx � U � ðCont:ÞV;x: ð39Þ

Compared to ðAdv:-IÞx, Eq. (34), the advective form of Scheme II employs an arithmetic average in the

vertex-based directions, or for the o=oy term, instead of a volume-weighted average. This reduces the lowest-
ordermesh stretch error in the y-direction. In the V equation ðAdv:-IIÞy , an arithmeticmean is applied to o=ox.

3.3.3. Scheme III

Another scheme of interest can be constructed by removing the second-order diffusion error of mesh
stretch. Utilizing a linear interpolation operator in the advective form for both the x and y-directions, we have
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ðAdv:-IIIÞx � bU x dU
dx

L;x

þ bV x dU
dy

L;y

; ð40Þ

which is denoted Scheme III. In this scheme, second-order accuracy is enforced by applying linear inter-
polation to an advective form. The corresponding conservative divergence form does not exist. However,

we could define ðDiv:-IIIÞ as follows:

ðDiv:-IIIÞx � ðAdv:-IIIÞx þ U � ðCont:ÞV;x: ð41Þ

This divergence form is not conservative; therefore Eq. (41) does not conserve momentum or kinetic

energy exactly with variable mesh spacing, even if continuity is enforced.
4. Numerical tests

Fully turbulent flow in a uniform plane channel was simulated on a mesh with stretching in the

streamwise direction, as well as in the wall-normal direction. The channel size is ð8H ; 2H ; 2:4HÞ, where H is
the half channel height, in the streamwise, wall-normal, and spanwise directions, respectively. The grid size

is 128� 80� 32. In both the streamwise and spanwise directions, periodic boundary conditions are im-

posed. A constant pressure drop is applied between the inlet and outlet of the channel. The resulting

Reynolds number, Re, based on H and the maximum mean velocity Umax, is about 4000, while Res based on

H and the friction velocity us is 250.
The dissipation term in the v2 budget, e22, is chosen as a parameter to compare the relative accuracy of

the three schemes. The terms of the v2 budget are relatively small and are sensitive to numerical inaccu-

racies. In the streamwise direction, the mesh spacing is distributed symmetrically about x ¼ 4H . The mesh
contracts in x < 4H , and expands in x > 4H . The ratio of mesh stretch diffusion to molecular viscosity,

UmaxdðDxÞ=m, ranges approximately from �20 to 20. This can be called the mesh stretch Reynolds number.

It is relatively large, to illustrate the nature of mesh stretch error. Smaller values will reduce the size of

error, but it remains present in well resolved simulations [3].

In addition to the three schemes discussed previously, the following scheme in a divergence form is also

tested here:

ðDiv:-Orig:Þx �
dðUL;x

U
L;xÞ

dx
þ dðV L;x

U
L;yÞ

dy
: ð42Þ

Instead of the area-weighted average to evaluate the mass flux velocity at the inter-cell face, rather intui-

tively, linear interpolation weights are adopted. Eq. (42) has been used in previous DNS and LES studies,

although without a strong mesh stretch in the streamwise direction. While Eq. (42) may improve the ac-

curacy in the cell-based directions (the y- and z-directions for the U equation) it does not in the other

direction. Moreover, it gives up the connection to an equivalent advective form, which leaves the error

estimate unclear. We include it simply for a connection to common practice.

Fig. 5 shows the distributions of eþ22 � me22=u4s in the y-direction. The mesh plot is of the two-dimensional
distribution e22ðx; yÞ for ðDiv:-IIÞ. Each vertical line of the mesh indicates an x grid location, whereas each

curve drawn in the x-direction corresponds to an e22-distribution at a particular y grid location. The

maximum e22 for a given x location occurs approximately at y ¼ 0:2H . The other line plots show the

maximum values for each x location. Ideally, these profiles should be straight lines, independent of x,
because the channel is uniform.

Among the four convective forms, ðDiv:-OrigÞ and ðDiv:-IÞ show the largest over-shoot errors, slightly

downstream of x ¼ 4H . In the mesh-contracting region, x < 4H , e22 gradually decreases, and then rises



Fig. 5. Comparison of eþ22 over/under-shoot due to the mesh stretch error. The mesh plot shows eþ22ðx; yÞ for ðDiv:-IIÞ.
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sharply in the mesh-stretching region, x > 4H . This agrees with the first excess, then negative diffusion

added by the mesh stretch in each region. The same tendency is observed for ðDiv:-IIÞ, although the over-

shoot error is smaller.

ðDiv:-IIIÞ shows a nearly symmetric profile on x ¼ 4H . It would not produce either excess diffusion or

anti-diffusion based on a Taylor series analysis (corresponding to kn ! 0 in FD-3 in Fig. 1). Nevertheless a

considerable over-shoot is observed near the middle of the channel. This demonstrates the need to analyze

the shorter wavelength error by Fourier analysis. As seen in Fig. 1, ðDiv:-IIIÞ produces a significant dif-

fusive error at large kn: the error is an anti-diffusion in a mesh-contracting region, and positive-diffusion in a
mesh-stretching region. This corresponds to the observation in Fig. 5; e22 increases as the mesh spacing

decreases in x < 4H due to anti-diffusion, and decreases in x > 4H .

In addition to the extra/anti-diffusive error, the two-dimensional ðDiv:-IÞ form has a first-order deriv-

ative error of Oðh � h00Þ, in the y-direction for U , and in the x-direction for V . For the grid of the present

study, a considerable magnitude of that error occurs at only at a few node points around x ¼ 4H , where the

slope of the Dx distribution changes discontinuously. The maximum error of convective velocity is about

4% at x ¼ 4H , whereas the error is less than 0.5%, everywhere else. This first-order derivative error is re-

moved in the other schemes.
The mesh stretching affects not only the v2 budget, but also v2 itself. Fig. 6 shows the v2 fluctuations from

the streamwise average for the schemes examined in the channel flow simulation. The presented profiles are

at y ¼ 0:16H , where the over-shoot error of e22 reaches its maximum. Due to a short sampling time, these

data still exhibit statistical fluctuations, approximately �3% of v2. However, the under-shoot in the mesh-

contracting region, x < 4H , and the over-shoot in the mesh-expanding region, x > 4H , which can be es-

timated as �13% for ðDiv:-IÞ, are statistically significant. The ðDiv:-IIÞ scheme shows the same tendency as

ðDiv:-IÞ and ðDiv:-Orig:Þ, but the range of fluctuation is about halved. ðDiv:-IIIÞ presents the opposite

effect on the sign of mesh stretch ratio, compared to the other schemes, as also seen in the e22 profiles.
Although Figs. 5 and 6 show the particular difference between ðDiv:-IIÞ and ðDiv:-IIIÞ, and the over-

shoot of ðDiv:-IIÞ is slightly smaller than that of ðDiv:-IIIÞ, we cannot ascertain which is better suited to

DNS with mesh stretch. However, a more detailed DNS test on these two schemes shows that the ðDiv:-IIIÞ



Fig. 6. Deviation of v2 from its streamwise average hv2i at y ¼ 0:16H .
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form retains a certain level of error in statistics even if the mesh stretch ratio is reduced. The main reason is

that this form, Scheme III, becomes fairly diffusive in high-wavenumber Fourier modes, as seen in the linear

test case. As statistics are sampled, it accumulates erroneous behavior caused by high-frequency modes in
full turbulence simulations, even though Scheme III shows the best performance in the simple convection

problem, at low wavenumbers. Also, it may be added that this formulation conserves neither kinetic energy

or momentum, when mass conservation is enforced.
5. Conclusion

Mesh stretch effects on conservation properties and accuracy of numerical forms of convection terms
were reviewed and discussed for second-order, centered difference schemes. It was confirmed that to avoid

spurious errors, consistency between mass and momentum equations is essential in constructing a proper

form of conservative schemes on a non-uniform mesh.

However, mesh stretching locally causes significant diffusive effects on an anti-symmetric, centered

difference scheme. It has been verified that either anti- or positive-diffusion is produced, depending on the

sign of mesh stretch ratio and convection velocity. In turbulence simulations, however, higher-order

truncation errors also have a significant effect on high wavenumber modes, or small eddies in the dissipative

range. Straightforward treatment of convective schemes to eliminate the lowest-order truncation error may
not improve statistical results, as was seen in Scheme III.

Overall, Scheme II, which was suggested in Eq. (38), has been shown to minimize the errors in statistical

data, relative to other centered difference schemes with three-point stencils. It does not conserve quadratic

quantities but the momentum equations can still be written in a conservative form. It employs area-

weighted averages to formulate inter-cell flux velocity, and linear interpolations to evaluate other quanti-

ties. This is equivalent to an arithmetic mean of finite difference terms at two adjoining inter-cell faces in a

cell-centered grid system. This simple change from the kinetic energy conservation form, Scheme I, sig-

nificantly reduces the mesh stretch error on statistics, especially on the dissipation terms in Reynolds stress
budgets. An application of this method to DNS of a ribbed channel is contained in [3].
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